7 research outputs found

    TCAD simulation studies of novel geometries for CZT ring-drift detectors

    Get PDF
    In this work, technology computer-aided design (TCAD) simulation results of new CZT ring-drift detector geometries are presented. The physics model was developed and validated against the results from an existing device which had been comprehensively characterised at x-ray wavelengths. The model was then applied to new detector geometries and a systematic study of the parameters influencing charge collection performed. A comparison between one- two- and three-ring circle and semi-rectangular (or squircle) geometries is presented. In was found that charge collection with the squircle ring configuration was systematically better than the circular configuration and extends approximately m further from the collecting anode. In addition, a two-ring geometry device is shown to collect charge m and m further from the anode when compared to one- and three- ring geometries, respectively. Based on these results, we derive an optimum configuration which potentially can be multiplied on larger crystals, offering an increased charge collection volume without compromising energy resolution

    Sub-100 nanosecond temporally resolved imaging with the Medipix3 direct electron detector

    Get PDF
    Detector developments are currently enabling new capabilities in the field of transmission electron microscopy (TEM). We have investigated the limits of a hybrid pixel detector, Medipix3, to record dynamic, time varying, electron signals. Operating with an energy of 60keV, we have utilised electrostatic deflection to oscillate electron beam position on the detector. Adopting a pump-probe imaging strategy we have demonstrated that temporal resolutions three orders of magnitude smaller than are available for typically used TEM imaging detectors are possible. Our experiments have shown that energy deposition of the primary electrons in the hybrid pixel detector limits the overall temporal resolution. Through adjustment of user specifiable thresholds or the use of charge summing mode, we have obtained images composed from summing 10,000s frames containing single electron events to achieve temporal resolution less than 100ns. We propose that this capability can be directly applied to studying repeatable material dynamic processes but also to implement low-dose imaging schemes in scanning transmission electron microscopy.Comment: 11 pages, 6 figures; improve ref formatting + revise tex

    Sub-100 nanosecond temporally resolved imaging with the Medipix3 direct electron detector

    No full text
    Experimental data files for the associated paper. See readme for full details

    Leakage current measurements of a pixelated polycrystalline CVD diamond detector (vol 8, C01056, 2013)

    Get PDF
    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1n

    Monolithic pixel development in 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    No full text
    The ATLAS experiment at CERN plans to upgrade its Inner Tracking System for the High-Luminosity LHC in 2026. After the ALPIDE monolithic sensor for the ALICE ITS was successfully implemented in a 180 nm CMOS Imaging Sensor technology, the process was modified to combine full sensor depletion with a low sensor capacitance (≈ 2.5fF), for increased radiation tolerance and low analog power consumption. Efficiency and charge collection time were measured with comparisons before and after irradiation. This paper summarises the measurements and the ATLAS-specific development towards full-reticle size CMOS sensors and modules in this modified technology.The ATLAS experiment at CERN plans to upgrade its Inner Tracking System for the High-Luminosity LHC in 2026. After the ALPIDE monolithic sensor for the ALICE ITS was successfully implemented in a 180 nm CMOS Imaging Sensor technology, the process was modified to combine full sensor depletion with a low sensor capacitance (\approx 2.5fF), for increased radiation tolerance and low analog power consumption. Efficiency and charge collection time were measured with comparisons before and after irradiation. This paper summarises the measurements and the ATLAS-specific development towards full-reticle size CMOS sensors and modules in this modified technology

    Considerations for the VELO detector at the LHCb Upgrade II

    No full text
    The LHCb experiment is planning to operate with a 7.5-fold increase in instantaneous luminosity for LHC Runs 5 and 6. The performance of the Vertex Locator detector is crucial in the event reconstruction at the increased pile-up, providing real-time information to be used in the trigger. This document presents the considerations for a future detector with timing capabilities for each track and minimal amount of material. Simulation studies indicate that a track temporal resolution of 20 ps is required to achieve the physics performance desired in Upgrade II, while keeping the same spatial resolutions as in VELO Upgrade I. Key promising technologies are listed and an R&D plan to achieve the complete set of requirements is laid out
    corecore